skip to main content


Search for: All records

Creators/Authors contains: "Albano, Paolo G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Death assemblages (DAs) are increasingly recognized as a valuable source to reconstruct past ecological baselines, due to the accumulation of skeletal material of non-contemporaneous cohorts. We here quantify the age and time-averaging of DAs on shallow subtidal (5–25 m) rocky substrates and in meadows ofPosidonia oceanicain the eastern Mediterranean. We show that such DAs are very young – median ages 9–56 years – with limited time-averaging, one to two orders of magnitude less than on even nearby soft substrates. On rocky substrates, out-of-habitat transport is likely the main cause of loss of older shells. InPosidonia oceanicameadows, the root and rhizome system creates a dense structure – thematte– that quickly entangles and buries shells and limits the potential for bioturbation. Thematteis, however, a peculiar feature ofPosidonia oceanica, and age and time-averaging in meadows of other seagrass species may be different. The young age of DAs in these habitats requires a careful consideration of their appropriateness as baselines. The large difference in DA age between soft substrates, subject to numerous studies, and hard and seagrass substrates, rarely inspected with geochronological techniques, implies that DA dating is important for studies aiming at using DAs as baselines.

     
    more » « less
  2. Abstract Paleobiological and paleoecological interpretations rely on constraining the temporal resolution of the fossil record. The taphonomic clock, that is, a correlation between the alteration of skeletal material and its age, is an approach for quantifying time-averaging scales. We test the taphonomic clock hypothesis for marine demersal and pelagic fish otoliths from a 10–40 m depth transect on the Mediterranean siliciclastic Israeli shelf by radiocarbon dating and taphonomic scoring. Otolith ages span the last ~8000 yr, with considerable variation in median and range along the transect. Severely altered otoliths, contrary to pristine otoliths, are likely to be older than 1000 yr. For pelagic fish otoliths, at 30 m depth, taphonomic degradation correlates positively with postmortem age. In contrast, no correlation occurs for demersal fishes at 10 and 30 m depth, mostly because of the paucity of very young pristine (<150 yr) otoliths, possibly due to a drop in production over the last few centuries. Contrary to molluscan and brachiopod shells, young otoliths at these depths are little affected and do not show a broad spectrum of taphonomic damage, because those that derive from predation are excreted in calcium- and phosphate-rich feces forming an insoluble crystallic matrix that increases their preservation potential. At 40 m depth, all dated otoliths are very young but rather damaged because of locally chemically aggressive sediments, thus showing no correlation between taphonomic grade and postmortem age. Our results show that local conditions and the target species population dynamics must be considered when testing the taphonomic clock hypothesis. 
    more » « less
  3. null (Ed.)
    Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a ‘novel ecosystem’ whose restoration to historical baselines is not achievable. 
    more » « less
  4. Abstract Studies of paleocommunities and trophic webs assume that multispecies assemblages consist of species that coexisted in the same habitat over the duration of time averaging. However, even species with similar durability can differ in age within a single fossil assemblage. Here, we tested whether skeletal remains of different phyla and trophic guilds, the most abundant infaunal bivalve shells and nektobenthic fish otoliths, differed in radiocarbon age in surficial sediments along a depth gradient from 10 to 40 m on the warm-temperate Israeli shelf, and we modeled their dynamics of taphonomic loss. We found that, in spite of the higher potential of fishes for out-of-habitat transport after death, differences in age structure within depths were smaller by almost an order of magnitude than differences between depths. Shell and otolith assemblages underwent depth-specific burial pathways independent of taxon identity, generating death assemblages with comparable time averaging, and supporting the assumption of temporal and spatial co-occurrence of mollusks and fishes. 
    more » « less
  5. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less